Imperial College London

KI-Net: Kinetic description of emerging challenges in multiscale problems of natural sciences

An NSF Research Network in Mathematical Sciences

Conference Announcement

Collective Behavior: Macroscopic versus Kinetic Descriptions

May 19-23, 2014

Department of Mathematics Imperial College London

Organizers

José A. Carrillo
Alina Chertock
Pierre Degond
Marco Di Francesco
Eitan Tadmor

Imperial College London
North Carolina State University
Imperial College London
University of Bath
University of Maryland

Confirmed Participants

Eshel Ben-Jacob Adrien Blanchet David Cai Vincent Calvez José A. Carrillo Alina Chertock **Young-Pil Choi Pierre Degond** Ron DeVore Marco Di Francesco Raluca Eftimie **Bjorn Engquist Yanghong Huang Pierre-Emmanuel Jabin Axel Klar** Theodore Kolokolnikov Jian-Guo Liu Philip K. Maini Cristina Marchetti **Stephan Martin** Sébastien Motsch **Benoît Perthame Christian Ringhofer Endre Süli Eitan Tadmor Changhui Tan Guy Theraulaz Giuseppe Toscani**

Tel Aviv University Université Toulouse 1 Capitole Shanghai Jiao Tong University École Normale Supérieure de Lyon Imperial College London North Carolina State University Imperial College London Imperial College London Texas A&M University University of Bath **Dundee University** The University of Texas at Austin Imperial College London University of Maryland Technische Universität Kaiserslautern Dalhousie University **Duke University** Oxford University Syracuse University Imperial College London Arizona State University Université Pierre et Marie Curie Arizona State University Oxford University University of Maryland University of Maryland Université Paul Sabatier

Scientific Background

Nonlinear nonlocal aggregation/diffusion equations are basic macroscopic models in many collective behavior applications such as bacterial chemotaxis, swarming, and computational neuroscience, to name a few. Kinetic modeling is being derived in these applications to include a mesoscopic level of description bridging the microscopic to the macroscopic scales.

Goals

To discuss recent developments of mathematical analysis tools and methods, design of suitable numerical schemes, and numerical simulation in some selected new applications in the field of aggregation/diffusion and kinetic PDEs. In particular, we will focus on the interplay between aggregation and interaction behavior in nonlocal/nonlinear transport and diffusion phenomena.

A limited number of openings are available. To apply, complete the online application before March 1, 2014.

For more information and to apply: www.ki-net.umd.edu

Partial funding is also provided by:

Jonathan Touboul

In this conference we will also honor Eitan Tadmor's 60th birthday.

University of Pavia

Collège de France, Paris

